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Abstract 

A method for estimating the one-phase structure 
seminvariants (OPSSs) having values of 0 or yr has 
been proposed on the basis of the probabilistic theory of 
the three-phase structure invariants for a pair of 
isomorphous structures [Hauptman (1982). Acta Cryst. 
A38, 289-294]. The test calculations using error-free 
diffraction data of protein cytochrome %50 and its PtCI]- 
derivative show that reliable estimates of a number of the 
OPSSs can be obtained. The reliability of the estimation 
increases with the increase of the differences between 
diffraction intensities of the native protein and its heavy- 
atom derivative. A means to estimate the parameters of 
the distribution from the diffraction ratio is suggested. 

Introduction 

It has long been recognized that the combination of direct 
methods and isomorphous replacement facilitates the 
solution of the phase problem of macromolecular 
structures. Hauptman (1982) proposed the probabilistic 
theory of the three-phase structure invariants in the single 
isomorphous replacement (SIR) case. The theory was 
found to be quite effective in estimating several tens of 
thousands of the three-phase invariants having values 
close to 0 or yr with high reliability (Hauptman, Potter & 
Weeks, 1982). In the further exploitation of the potential 
of Hauptman's distribution, Fortier, Moore & Fraser 
(1985) obtained the estimates of cosine invariants in the 
full range of - 1  to 1 and, subsequently, Hao & Fan 
(1988) presented a method for the individual phase 
estimates by making use of heavy-atom structure 
information. These studies suggested that a combination 
of direct methods with SIR data might suffice to allow 
unique macromolecular structure determination. 

A major application of the estimates of the three-phase 
invariants would be to extend and refine phases by use 
of, for example, a tangent or a least-squares procedure. In 
addition, the three-phase invariants could be used to 
evaluate some special individual phases without 
knowledge of initial phases. The OPSSs, having values 
of 0 or yr, are a kind of individual phase whose value can 
be directly evaluated from structure-factor magnitudes. 
The accurate estimates of a number of the OPSSs may 
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play a significant role in the early stages of phase 
extension and refinement. The OPSS estimates in the 
presence of anomalous scattering have been studied 
(Velmurugan & Hauptman, 1989; Velmurugan, 
Hauptman & Potter, 1989; Liu & Hu, 1994). In this 
paper, we suggest a method to obtain the estimates of the 
OPSSs in the SIR case by incorporating symmetry 
relations into Hauptman's distribution, which, in effect, 
is similar to the )-~.1 relation used for small-molecule 
structure determination (Karle & Hauptman, 1956). The 
formulae have been tested with error-free diffraction data 
from protein cytochrome %50 and its PtC12- derivative. 

Theoretical basis 

1. The three-phase invariant with an OPSS involved 

Assuming that 99ri is an OPSS, the index of which 
satisfies 

H = K - Ki ----- 0(modtos), i = 2  . . . . .  m, (1) 

where w s is the seminvariant modulus and rn is the 
number of symmetry operators of the actual space group, 
which consist of the rotation components R i and the 
translation components Ti, we construct the three-phase 
structure invariant 

09=~0n--q~+qgK.  (2) 

Since 

99K -- qgK, = nyr, (3) 

where 

n -- 2KTi, (4) 

is a constant when the origin is restricted among the 
permitted origins, the value of q~n depends only on the 
invariant w. The types of q9 n are just the same as those 
defined by the )-~-1 relation if they have the extreme 
values of 0 or yr. For the space group P2~212 I, for 
example, there are three types of q~n: ¢P2h.Zk.0; %.2k.2~; 
qgZh.0,2 I. For the space groups with higher symmetry, 
some vectors H that are not independent of each other 
may occur when i changes from 2 to m. Only the 
independent H vectors should be retained. The types of 
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the independent q9 n for all space groups can be found in 
the papers of Ha~ek (1977) and Liu, Jin & Guo (1982). 

2. The probability distributions of  the OPSSs in the SIR 
case 

According to Hauptman (1982), for a triplet of 
reciprocal-lattice vectors H, K, L satisfying H + K + L = 
0, there exist four kinds of three-phase structure 
invariants: 

090 = 99n + 99i< + 99L, 

09t = q~n + q ~  + ~L, 
(5) 

092 = ~ + ¢ K  + e L ,  

093 = c a  + cK + eL, 

where ¢p and ~ are the phases of the structure factors 
from the native protein and the heavy-atom derivative, 
respectively, and the corresponding magnitudes are IEI 
and IGI. The conditional probability distributions of the 
structure invariants 09., assuming as known the six 
magnitudes IEHI, IEKI, IELI, IGHI, IGKI, IGLI, in their 
first neighborhood are given by 

P~(S2~) = [2~a0(A.)] -1 exp(A, cos S2.), 

/ x -  0, 1, 2, 3. (6) 

The notation used here is the same as that of Hauptman 
(1982). The distribution (6) leads to unique estimates of 
09~, at 0 or Jr when A~, > 0 or At, < 0, respectively. 

Now, substituting (2) into (5), we have four particular 
structure invariants: 

090 = (PI'I - -  (PK "~- ~OK,.' 

O91 = 1/TH - -  (PK + (PK i , ( 7 )  

092 = tpH - -  1IrK "~- l~rKi, 

093 = ~ . -  ~K + ~K,- 

The conditional probability distribution of 090, for 
example, can be written as 

P(~20) = [2Zdo(Ao)] -~ exp[A0 c o s ( ~  - ~ + ~0X,)] (8) 

and A o is given by 

A o -- 2[/3oR,R 2 +/3,(2R,R2S2T2 + R2S1T1) 

+/32(R,S2T 2 + 2R2S,S2T, T2) + /33S,S2TxT221, (9) 

where 

R1 = IEnl, R2--IEKI, $1 = IGHI, $2 = IGKI, 
(10) 

Tj is the ratio of two modified Bessel functions, 

Tj = II(2/3RjSj)/Io(E/3RjSj), j = 1, 2, (11) 

and 13 parameters have the same meaning as defined by 

Hauptman (1982). When a reflection K, together with its 
equivalent reflection Ki, satisfying (1) is given, the 
probability distribution for a fixed 99H is obtained from 
(8): 

PK(tPH) = [27r10(A0)] -1 exp[A0 COS(tPH -- mr)]. (12) 

Then we multiply the individual probability distributions 
to obtain the approximate form 

where K0 is a normalizing constant and the summation 
involves all the reflections K that satisfy (1). 

A similar expression is derived from the 092 invariant 
with 

A 2 = 2[/30RIR2T 2 -t-/31(2RIR2SET2 + RESIT1T22) 

-t-/32(R1 $2 "1- 2R2S,S2T, T2) + f13S1S22T,]. (14) 

Using the average ofA 0 and A 2, therefore, the probability 
distribution of ~on may be rewritten in the form 

e(99n) _~ [27r10(B~0)] -1 exp(B~ cos 99n), (15) 

where 

=½E(- B~ 1)"(Ao d- A2). (16) 
K 

Clearly, (15) has a unique maximum at ~ = 0 or zr 
when B~ > 0 or B~ < 0, respectively, and the larger the 
value of IB~I, the smaller the variance of the distribution. 
Thus, one obtains the estimate of the cosine seminvari- 
ant, cos g~n, by calculating the sign of B~ when IB~I is 
large. 

With a similar approach, we have the probability 
distribution of ~H from the 091 and 093 invariants: 

P(¢H) -~ [2zrl0(Bv,)] -1 exp(B~, cos qtH), (17) 

where 

B~, = ½ y~'~(-1)"(A, + A3), (18) 
K 

A 1 = 2LSoR1R2T1 d - / 3 1 ( 2 R 1 R 2 S 2 T I T 2  -I-R2S1) 
2 2 +/32(R1S2T1T22 + 2R2S1SET2) + /33S1S2T~], (19) 

A 3 = 2[floRIR2T1T22 + fll(2RIR2S2T1T2 + R2S1T2) 

"at- fl2(R1S2T1 "[- 2R2S1S2T2)-Jr /33S1S2]. (20) 

Similarly, the cosine seminvariant cos~Pn can be 
estimated from (17). 

Further accuracy of the estimates will accrue if the 
heavy-atom structure is known. As suggested by Fortier, 
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Moore & Fraser (1985), the calculated values of the 
cosine of the phase difference, 

cos((#~- C/)--  (IFye, I 2 + IFjel 2 -IFjnlZ)/21FjenllF~el, 

(21) 

can be substituted for its expected values Tj in (9), (14), 
(19) and (20). The symbols [Fien], [Fie [ and [Fjn [ are the 
jth-reflection structure-factor magnitudes of the heavy- 
atom derivative, native protein and heavy-atom structure, 
respectively. 

3. Estimation of  the ~ parameters 

The/3 parameters in the expressions of A are expressed 
in terms of 0/20, 0/02, 0/30, 0/03, 0/21, 0/12 and o/it [see 
equations (3.5)-(3.9) of Hauptman (1982)], which are 
defined by 

N 

~ m n :  E fjmg;, ( 2 2 )  
j=l 

where N is the number of atoms in the unit cell, fj and gj 
are zero-angle atomic scattering factors for a pair of 
isomorphous structures and therefore equal to the atomic 
number Zy in the X-ray diffraction case. In order to 
calculate the values of o/m,,, information concerning the 
chemical identity, the number and occupancy factors of 
heavy atoms is required. If the f structure is a native 
protein and the g structure a heavy-atom derivative, 0/0~ 
consists of contributions from the native protein and the 
heavy atoms. In such a case, it is possible to make 
estimates of 0/0~ from the diffraction ratio 

r = ((IEI 2 -[GI2)2)1/2/(IEI2), (23) 

which is a measure of the average change in intensity due 
to the addition of heavy atoms. 

By use of the result of Crick & Magdoff (1956), it 
readily follows that 

Z n "~ r(0/2o/2NH) 1/2, (24) 

where N n is the number of heavy atoms in the unit cell 
and Z n can be regarded as an effective atomic number of 
the heavy atoms, which is an average effect over the 
different atoms and occupancy factors. Although one 
cannot uniquely determine both Z n and N n from (24), it 
is possible to obtain an approximate value of N n by 
making Zn reasonable. A similar way to estimate the 
content of heavy atoms has been suggested by Fortier, 
Weeks & Hauptman (1984). Once N n has been 
determined, those ot0~ containing the contributions from 
the heavy atoms can be evaluated as follows: 

0/02 -~ 0/20 + ½ r20/2o, (25) 
, '~ 3 -  1 t O M  ~ - 1 / 2 r 3 ~ 3 / 2  (26) 

0/03 m 0/30 T ~ ~ , ~ ,  H 1 " ~ 2 0  

and thus the/~ parameters are obtained without detailed 
knowledge of the heavy-atom content. 

Applications 

1. The test calculations for a pair of  isomorphous 
structures 

The method for estimating the values (0 or Jr) of the 
OPSSs described above was tested with error-free data of 
protein cytochrome %50, molecular weight about 14 500, 
space group P212121 and a single PtC142- isomorphous 
derivative (Timkovich & Dickerson, 1976). The normal- 
ized structure factors were calculated from the atomic 
coordinates to a resolution of 2.5.4, (4159 E and 4159 G 
values). For each structure, there are 236 OPSSs (~0n or 
Ca) having indices in the forms 2h,2k,0; 0,2k,2l; 2h,0,2l. 
The cosines of ~Pn and Cn were estimated by calculating 
B~o and B~, using (16) and (18) according to three 
protocols: 

I. 0/mn containing the contributions of the heavy atoms 
was estimated from (25) and (26) and Tj was calculated 
from (11). This means no knowledge concerning the 
heavy atoms was used. 

II. An exact 0/mn was calculated from (22) and Tj from 
(11). 

III. a,,~ was calculated as in II but Tj was substituted 
by the calculated value (21) of cos(~oj - lpj). This means 
that the heavy-atom information including the number, 
occupancy and positions was utilized. 

The calculated results were arranged in descending 
order of IBI values. Table 1 was constructed by 
accumulation into the four groups shown according to 
the given minimum IB[ values. The top 200 divided into 
five groups are listed in Table 2. It is clearly shown that, 
as expected, the larger the [B[ value the more reliable is 
the cosine seminvariant estimate. In fact, as shown in 
Table 1, almost all the signs of the cosine seminvariants 
are correct for IBI > 1.5. Even when the IBI criterion is 
lowered to 0.5, the percentage of the seminvariants 
correctly estimated is still over 90%. Protocol I gives the 
results using the estimated values of a0n with N n = 4. 
For a given IB~nl, the number of seminvariants in the 
group for I is a little smaller than that for II and the 
number of incorrect signs is also smaller for I. This 
indicates that employing approximate values of a0, , does 
not interfere with the signs of the cosine seminvariants 
but causes an overall reduction of the IBI values in this 
example. Comparison of I with II and m shows that the 
use of knowledge of the heavy-atom structure markedly 
improves the estimation while the use of the heavy-atom 
content does little. It is noted that the reliably estimated 
seminvariants are not necessarily the reflections having 
large IEI (or Ial) values but correspond instead to those 
having large I E -  GI values. Fig. 1 shows the relation 
between the change of the normalized structure-factor 
magnitudes and the reliability of the estimates. For Fig. 
1, the results for the native protein (t&0 were arranged in 
descending order of IE - GI and then the percentages of 
the seminvariants with IBI > 1.5 and the averages 
( I E -  GI) were computed for the ranked groups; each 
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Table 1. Estimates of the one-phase cosine seminvariants accumulated in groups according to [Bmi . I for cytochrome 
c550 and its PtC142- derivative 

IBmi~l: the minimum IBI value in the group. Nwr: the number of signs of the cosine seminvariants incorrectly estimated. 

I II 111 

Number Number Number 
IBmi~l in group (IEI) ( I E - G I )  Nwr in group (IEI) ( I E - G I )  Nwr in group (lED ( I E - G I )  Nwr 

Native 5.0 70 0.99 0.49 0 79 0.97 0.48 0 112 0.87 0.44 0 
(~o.) 3.0 93 0.94 0.46 0 106 0.92 0.44 0 132 0.82 0.42 0 

1.5 128 0.89 0.42 0 137 0.89 0.41 2 159 0.81 0.39 0 
0.5 173 0.85 0.37 13 176 0.85 0.36 15 190 0.82 0.37 4 

Deriva- 5.0 76 0.95 0.47 0 86 0.94 0.45 0 112 0.87 0.44 0 
tive 3.0 96 0.95 0.45 0 104 0.94 0.44 0 132 0.82 0.42 0 
(~'H) 1.5 118 0.95 0.42 0 127 0.95 0.42 2 159 0.79 0.39 0 

0.5 159 0.88 0.38 10 168 0.85 0.37 13 190 0.79 0.37 4 

Table 2. Estimate results of the top 200 one-phase cosine seminvariants arranged in descending order of IBI and 
divided into five groups, each containing 40, for cytochrome c550 and its PtCI42- derivative 

Native 
(~) 

Derivative 
(~.) 

Nwr has the same meaning as in Table 1. 

IV I H m 
Group 

no. (IBI) ( I E -  GI) Nwr (IBI) ( [ E -  GI) Nwr (IBI) ( I E - G I )  Nwr (IBI) (IEI) Nwr 
1 18.5 0.49 0 22.4 0.49 0 30.6 0.46 0 0.76 1.60 20 
2 6.3 0.46 0 7.6 0.46 0 11.4 0.47 0 0.18 1.03 18 
3 2.8 0.35 0 3.4 0.35 0 6.5 0.36 0 0.10 0.91 21 
4 1.1 0.23 9 1.4 0.23 10 2.6 0.28 0 0.06 0.70 16 
5 0.4 0.14 13 0.5 0.15 12 0.8 0.20 7 0.02 0.50 20 

1 18.6 0.52 0 22.4 0.52 0 30.6 0.46 0 1.63 1.68 17 
2 6.2 0.40 0 7.5 0.41 0 11.4 0.47 0 0.42 0.98 18 
3 2.9 0.35 I 3.5 0.34 1 6.5 0.36 0 0.22 0.74 17 
4 0.9 0.22 10 1.1 0.24 9 2.6 0.28 0 0.10 0.68 18 
5 0.3 0.16 15 0.4 0.17 15 0.8 0.20 7 0.05 0.50 21 

contains 40 data but the last contains 36 data. It can be 
seen that at least 95% of the seminvariants are correctly 
estimated when the change of the normalized structure- 
factor magnitudes is larger than 0.6 and this percentage 
rapidly decreases with decreasing ( [ E -  GI). Fig. 1 also 
shows that the incorporation of the heavy-atom structure 
information (protocol III) leads to an obvious increase in 
the number of seminvariants with large In[ values, 
especially when ( I E -  G I ) <  0.45. In other words, a 
remarkable gain in reliability for those seminvariants 
having smaller IE - G[ values can be obtained by the use 
of the calculated values of cos(~0j- apj) instead of its 
expected values. 

2. Comparison with the non-isomorphous case 

In the non-isomorphous case, the cosine seminvariants 
can be estimated by 

P(tpn ) = [2trio(B)] -1 exp(B cos qgn), (27) 

where 

B = 2 Z]  Z 2 [Eal y~'~(--1)"IEK[ 2 (28) 

and Zj is the atomic number of the jth atom in the unit 
cell. This is almost the same as the )-~1 formula. 

In order to make a comparison with the non- 
isomorphous case, the 236 q~n values for the native 
protein were estimated from (28) as protocol IV. These 
were arranged in descending order of [B[ values and the 
top 200 are listed in Table 2. The same calculations were 
also carried out for the derivative structure. The average 

100 % of ~H'S with IBI > 1.5 

9o 

. o  
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60 o/ 

40 / . ~  

50 /o ~/ e-Protocol I 

20 // o-Protocol III 

/ 1o 

o o'., o'.,. o16 
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Fig. 1. Percentage of the seminvariants 9n with IBI > 1.5 as a function 
of (IE - GI), showing the reliability of the estimates dependent on 
the differences between the structure-factor magnitudes of the native 
protein and the derivative. 
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values of IBI in the non-isomorphous case are much 
smaller than those in the isomorphous case, as is shown 
in Table 2, resulting in the rather poor estimates. Nearly 
half of the seminvariants are incorrectly estimated. This 
implies that the traditional E1 formula is not applicable 
in the macromolecular case and the comparison con- 
firms that the ability to combine direct methods and 
isomorphous replacement is powerful. 

Concluding remarks 

The distribution of Hauptman (1982) employing a 
combination of direct methods and the SIR technique 
has been developed to estimate the values (0 or Jr) of the 
OPSSs. The method proved to be effective with the error- 
free data of a pair of isomorphous structures. No heavy- 
atom information, neither the positions nor the content of 
heavy atoms, is necessary to obtain the estimates of the 
cosine seminvariants but, if the heavy atoms are located, 
better results can be obtained by making use of the 
heavy-atom structure information. The test calculations 
agree with the prediction of Fortier, Weeks & Hauptman 
(1984) that, even when the normalized structure factors 
themselves are small, reliable estimates can be obtained 
provided that the differences beween the structure-factor 
magnitudes of the native protein and the derivative are 
large. 

The method presented here is actually equivalent to 
the ~ 1  formula combining with SIR data and provides a 
supplementary technique of finding individual phases in 
the initial stages of the phasing procedure. An obvious 
practical application lies in the possibility of enhancing 
the starting set in the standard tangent refinement 

by incorporating a number of the OPSSs with high 
reliability. In view of the fact that at least two thirds of 
the OPSSs can be accurately determined for the chosen 
example, it is not unreasonable to expect that the method 
may play a more important role in the solution of 
macromolecular structures than the S'~a formula does in 
the small molecule case. This work also shows that 
Hauptman's distribution is very promising in solving the 
phase problem in the SIR case, although further 
theoretical and experimental studies are needed for 
applying it to unknown structures. 

This work was supported in part by Jilin Aodong 
Pharmaceuticals Ltd. 
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Abstract 

Macroscopic tensorial physical properties that are 
different in two domains of a ferroic crystal provide a 
tensor distinction of the two domains. This tensor 
distinction is determined from a symmetry relationship, 
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called a twin law, between the bulk structures, the 
domain states, of the two domains. The simplest type of 
twin law is the so-called completely transposable twin 
law. We extend here the concept of completely 
transposable twin laws from non-magnetic to magnetic 
completely transposable twin laws. We establish the 
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